

October 1986 Revised July 2003

DM74AS874 Dual 4-Bit D-Type Edge-Triggered Flip-Flop

General Description

These dual 4-bit inverting registers feature totem-pole 3-STATE outputs designed specifically for driving highly-capacitive or relatively low-impedance loads. The high-impedance state and increased high-logic-level drive provide these registers with the capability of being connected directly to and driving the bus lines in a bus-organized system without need for interface or pull-up components. They are particularly attractive for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight flip-flops of the DM74AS874 are edge-triggered D-type flip-flops. On the positive transition of the clock, the Q outputs will be set to the logic states that were set up at the D inputs.

A buffered output control input can be used to place the eight outputs in either a normal logic state (HIGH or LOW logic levels) or a high-impedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly.

The output control does not affect the internal operation of the flip-flops. That is, the old data can be retained or new data can be entered even while the outputs are OFF.

The pinout is arranged to ease printed circuit board layout. All data inputs are on one side of the package, while all outputs are on the other side.

Features

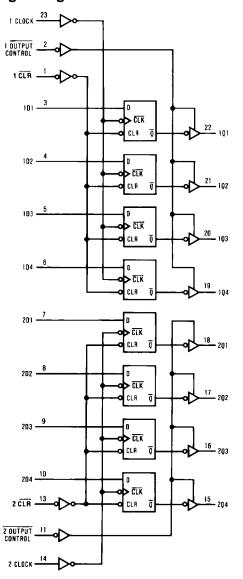

- Switching specifications at 50 pF
- \blacksquare Switching specifications guaranteed over full temperature and V_{CC} range
- Advanced oxide-isolated, ion-implanted Schottky TTL process
- 3-STATE buffer-type outputs drive bus lines directly
- Space saving 300 mil wide package
- Bus structured pinout

Ordering Code:

Order Number	Package Number	Package Description
DM74AS874WM	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
DM74AS874NT	N24C	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram



Function Table

	Inputs						
CLR	D	CLK	oc	Q			
Х	Х	Х	Н	Z			
L	Х	X	L	L			
Н	Н	1	L	Н			
Н	L	1	L	L			
Н	Х	L	L	Q_0			

- H X
 L = LOW State
 H = HIGH State
 X = Don't Care
 ↑ = Positive Edge Transition
 Z = High Impedance State
 Q₀ = Previous Condition of Q

Logic Diagram

Absolute Maximum Ratings(Note 1)

Supply Voltage 7V Input Voltage 7V Voltage Applied to Disabled Output 5.5V Operating Free Air Temperature Range 0°C to +70°C

Storage Temperature Range -65°C to +150°C

Typical θ_{JA}

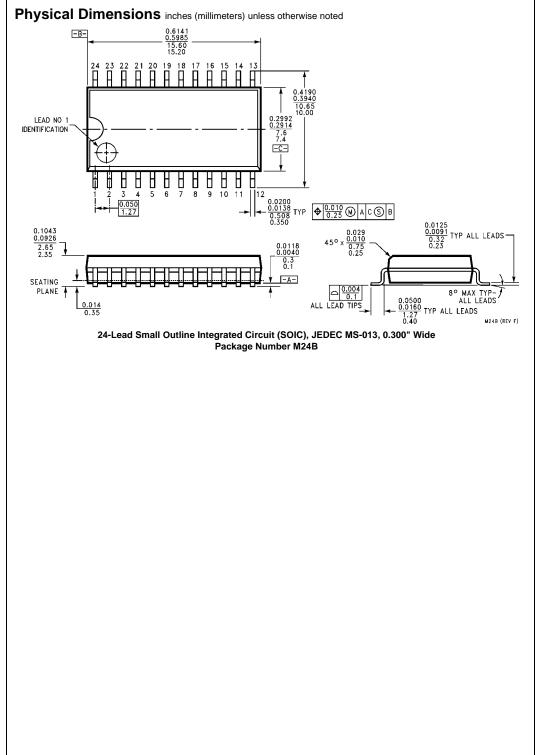
N Package 47.0°C/W

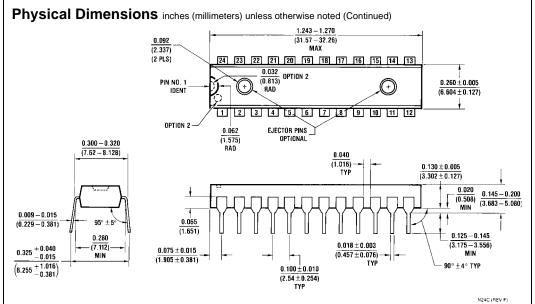
Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units		
V _{CC}	Supply Voltage		4.5	5	5.5	V	
V _{IH}	HIGH Level Input Voltage		2			V	
V _{IL}	LOW Level Input Voltage				0.8	V	
I _{OH}	HIGH Level Output Current				−15	mA	
I _{OL}	LOW Level Output Current	LOW Level Output Current			48	mA	
f _{CLK}	Clock Frequency		0		80	MHz	
t _{WCLK}	Width of Clock Pulse H	IGH	3			ns	
	LC	WC	6				
t _{WCLR}	Width of Clear Pulse L0	WC	2			ns	
t _{SU}	Setup Time Di	ata	4↑			ns	
	(Note 2)	lear Inactive	5↑				
t _H	Data Hold Time (Note 2) Free Air Operating Temperature		1↑			ns	
T _A			0		70	°C	

Note 2: The (1) arrow indicates the positive edge of the Clock is used for reference.


Electrical Characteristics


over recommended operating free air temperature range. All typical values are measured at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Symbol	Parameter	Conditions		Min	Тур	Max	Units
V _{IK}	Input Clamp Voltage	$V_{CC} = 4.5V, I_I = -18 \text{ mA}$				-1.2	V
V _{OH}	HIGH Level	$V_{CC} = 4.5V$, $V_{IL} = V_{IL} Max$, $I_{OH} = Max$		2.4	3.3		V
	Output Voltage	$I_{OH} = -2 \text{ mA}, V_{CC} = 4.5 \text{V to } 5.5 \text{V}$	V _{CC} - 2			ľ	
V _{OL}	LOW Level	$V_{CC} = 4.5V, V_{IH} = 2V,$			0.35	0.5	V
	Output Voltage	I _{OL} = Max			0.33	0.5	V
I	Input Current at Max Input Voltage V _{CC} = 5.5V, V _{IH} = 7V					0.1	mA
I _{IH}	HIGH Level Input Current	V _{CC} = 5.5V, V _{IH} = 2.7V				20	μΑ
I _{IL}	LOW Level Input Current	$V_{CC} = 5.5V, V_{IL} = 0.4V$				-0.5	mA
I _O (Note 3)	Output Drive Current	$V_{CC} = 5.5V, V_{O} = 2.25V$		-30		-112	mA
I _{OZH}	OFF-State Output Current,	$V_{CC} = 5.5V, V_{IH} = 2V,$				50	μА
	HIGH Level Voltage Applied	$V_{O} = 2.7V,$					
I _{OZL}	OFF-State Output Current,	$V_{CC} = 5.5V, V_{IH} = 2V,$ $V_{O} = 0.4V$				-50	μА
	LOW Level Voltage Applied						
Icc	Supply Current	V _{CC} = 5.5V	Outputs HIGH		82	133	
		Outputs OPEN	Outputs LOW		92	149	mA
			Outputs Disabled		100	160	

Note 3: The output conditions have been chosen to produce a current that closely approximates one-half of the true short-circuit current, I_{OS}.

Switching Characteristics over recommended operating free air temperature range Conditions From То Min Max Units Symbol Parameter V_{CC} = 4.5V to 5.5V Maximum Clock Frequency 80 MHz Propagation Delay Time Clock $R_L=500\Omega$ Any Q 8.5 ns LOW-to-HIGH Level Output $C_{L} = 50 \text{ pF}$ Propagation Delay Time Clock t_{PHL} Any Q 4 10.5 HIGH-to-LOW Level Output Output Enable Time Output Control Any Q t_{PZH} to HIGH Level Output Output Control Output Enable Time Any Q t_{PZL} 3 10.5 ns to LOW Level Output Output Control Any Q t_{PHZ} Output Disable Time 2 6 from HIGH Level Output Output Disable Time Output Control Any Q t_{PLZ} 2 ns from LOW Level Output Clear Propagation Delay Time Any Q t_{PHL} 11.5 ns HIGH-to-LOW Level Output

24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N24C

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com